
Insights into the initiation of type 2 immune responses

Introduction to T helper type 2 immune
responses

The host immune system comprises both non-specific

innate immunity and antigen-specific adaptive immune

responses. Although described as separate entities there is

extensive cross-talk between the innate and adaptive

immune responses that together are important for com-

bating the diverse array of microorganisms encountered

by the host throughout its life.

Activated type 2 immune responses are typically char-

acterized by the expression of classical effector type 2

cytokines including interleukin-4 (IL-4), IL-5, IL-9 and

IL-13 that in turn affect antibody class switching to

IgG1 and IgE, recruitment of inflammatory effector cells

such as eosinophils, basophils and mast cells, and goblet

cell hyperplasia leading to mucus production (Fig. 1).

Ultimately, these effector functions have evolved to con-

trol extracellular helminth infections such as those

involving Schistosoma mansoni and Trichuris muris in

humans and mice, respectively. However, inappropriate

activation of type 2 immune responses is also associated

with detrimental conditions, such as asthma where

smooth muscle constriction in the airways results in air-

way hyper-responsiveness (AHR). Although CD4+ T

helper type 2 (Th2) cells are a major player in type 2

immune responses because of their ability to express a

wide variety of the classical effector cytokines, other cell

types have also been shown to play important roles in

the response. This review focuses on the mechanisms of

generating type 2 immune responses, with particular

focus on the antigens/allergens, cells and inflammatory

mediators that are important for the initiation of these

responses.
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Summary

Type 2 immune responses, characterized by the differentiation of CD4+ T

helper type 2 (Th2) cells and the production of the type 2 cytokines inter-

leukin-4 (IL-4), IL-5, IL-9 and IL-13, are associated with parasitic hel-

minth infections and inflammatory conditions such as asthma and

allergies. Until recently the initiating factors associated with type 2

responses had been poorly understood. This review addresses the recent

advances in identifying the diverse range of antigens/allergens associated

with type 2 responses and the function, expression and sources of type-2-

initiating cytokines (thymic stromal lymphopoietin, IL-25 and IL-33). We

also discuss the latest findings regarding innate lymphoid cells, such as

nuocytes, as early sources of type 2 cytokines and their importance in

protective immunity to helminth infections. These developments represent

major breakthroughs in our understanding of type 2 immunity, and high-

light the increased complexity existing between the innate and adaptive

arms of these responses. These additional steps in the type 2 immune

pathway also offer potential targets for therapeutic intervention.
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What antigens are associated with type 2

immune responses?

To initiate an adaptive immune response, cells of the

innate immune system must acquire antigens and pro-

cess them into peptides that can be presented to CD4+

T helper cells via MHC class II molecules. It is widely

known that the antigens associated with Th1 and Th17

cell differentiation are acquired by phagocytosis and pro-

cessing of the invading pathogen. However, the patho-

gens associated with type 2 immune responses are large

and unlikely to be phagocytosed by antigen-presenting

cells. Therefore, it is believed that proteins shed or

excreted during the life cycle of the parasite are phago-

cytosed and presented to CD4+ T cells via MHC

class II.

Furthermore, efficient CD4+ T-cell responses require

additional signals from innate cells following the recogni-

tion of conserved molecular structures, known as micro-

organism-associated molecular patterns. Much of our

knowledge regarding microorganism-associated molecular

patterns and the guidance of the adaptive immune

response comes from studies on Toll-like receptors

(TLRs) and their role in guiding Th1 and Th17 responses.

However, it is only recently that we have started to iden-

tify the receptors and antigens associated with the initia-

tion of type 2 immune responses. For instance, there are

increasing amounts of data demonstrating that cysteine

proteases such as papain and house dust mite (HDM)-

derived Der p 1 initiate type 2 immune responses

in vivo.1–4 Further to these findings in vitro studies have

shown that epithelial cell lines and basophils treated with

cysteine proteases express a variety of type 2 effector cyto-

kines including IL-4 and thymic stromal lymphopoietin

(TSLP).4,5

In addition to Der p 1, HDM allergen has also been

shown to contain a second allergen known as Der p 2.6 A

study by Trompette et al.7 demonstrated that Der p 2 is

structurally similar to the TLR4-associated adapter pro-

tein MD2. A second study by Hammad et al.8 used ele-

gant chimera studies to show that HDM allergen

administered to the airway only induced type 2 immune

responses when TLR4 expression was present on non-hae-

matopoietic cells. Furthermore, intranasal administration

of Der p 2 in the absence of MD2 still induced airway

inflammation.7 In addition, several studies have shown

that HDM preparations contain low levels of bacterial

lipopolysaccharide, which is a known ligand for TLR4.7

Interestingly, low concentrations of lipopolysaccharide

administered to a host, combined with ovalbumin, induce

a type 2 immune response associated with IgE class

switching, eosinophil recruitment and expression of the

effector cytokines IL-5 and IL-13.9 Based on these find-

ings it is possible to suggest that lung non-haematopoietic

cells recognize low levels of lipopolysaccharide through a

TLR4/Der p 2-dependent manner and that this may con-

tribute to the initiation of type 2 immune responses

(Fig. 2).
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Figure 1. Expression and function of type 2 effector cytokines. Type 2 effector cytokines come from a variety of sources including antigen-stimu-

lated CD4+ T-cell subsets such as T helper type 2 (Th2) and Th9 cells, antigen-stimulated basophils or cytokine-stimulated innate lymphoid cells

(ILC), such as nuocytes. It is the expression of these cytokines that leads to IgE class switching, goblet cell hyperplasia, which is important for

mucus production, recruitment of various innate cell populations like eosinophils, basophils and mast cells, and enhanced the proliferation and

differentiation of CD4+ T cells. IL-4, interleukin-4.
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It has long been known that type 2 immune responses

can be initiated against antigens, such as ovalbumin, by

combining them with aluminium-containing adjuvants,

collectively known as ‘alum’. Although alum is extensively

used as an adjuvant in humans its precise mechanism of

action is poorly understood. One of the major insights

into the mechanism of alum came from the observation

that in vitro stimulated dendritic cells (DCs) expressed

functional IL-1b, IL-18 and, particularly important for

type 2 immune responses, IL-33.10,11 A later study by the

same group highlighted an important role for caspase-1

in alum-induced expression of IL-1 family members.10

Further in vitro studies identified that alum-mediated

caspase-1 activation was dependent on the NOD-like

receptor (NLR) family, pyrin domain containing (NLRP3)

inflammasome and its appropriate adaptor molecules.12–16

The importance of the NLRP3 inflammasome in alum-

induced type 2 immune responses was highlighted in vivo

by findings that mice deficient in NLRP3 had impaired

class switching to IgE following alum administration.12,13

Based on these findings it was thought that activating the

NLRP3 inflammasome resulted in caspase-1 activation

and the subsequent activation of IL-33. In contrast to this

hypothesis, recent studies have suggested that biologically

active IL-33 is constitutively expressed by epithelial/endo-

thelial cells and inactivated by caspases.17–19 Furthermore,

a splice variant of IL-33 lacking the caspase-1 cleavage site

is constitutively active.20 The studies described above have

shed light on the mechanism behind alum-induced type 2

immune responses although the findings are still contro-

versial. It is possible that alum causes tissue damage,

potentially through a build up of uric acid,21 and subse-

quently the release of biologically active IL-33 plays an

important role in the expression of type 2 cytokines from

various cell types (Fig. 2).11

In addition to specific antigens or allergens, in vitro

studies have shown that Th2 differentiation, which could

lead to type 2 immune responses, is also dependent on

the quality of the T-cell receptor signal. For instance,

early studies showed that activating CD4+ T cells with

low and high doses of antigen induced a Th2 and Th1

differentiation, respectively.22,23 Similarly stimulation of

naive CD4+ T cells with altered peptides is associated with

increased Th2 differentiation.24,25 Weak T-cell receptor

stimulation functions by up-regulating the expression of

GATA-binding protein 3 (GATA3), which is an essential

step in the differentiation of Th2 cells, leading to IL-4

expression. Interestingly, a collection of studies hypothe-

sized that a major antigen in S. mansoni soluble egg anti-

gen (SEA) known as omega-1 conditions DCs resulting in

a decrease in T-cell receptor signalling strength.26,27

It is important to note that SEA preparations deficient

in omega-1 are still able to induce Th2 polarization.26

The ability of SEA to induce Th2 differentiation can be

explained by the presence of glycosylated components

found in the preparation that can act as adjuvants. For

instance, a study by Schramm et al.28 showed that

the SEA component known as inducing principle of

Alum. Uric acid
Der p 2/

LPS

IL-33

TLR4

Cysteine proteases/
IPSE

IL-25
TSLP IL-4

IL-4
IL-13

Basophil

Caspase-1

IL-33 ILC
(Nuocyte)

IL-5
IL-13

DC

Omega-1

Antigen
presentation

Th2 cell

Figure 2. A complex cytokine network underlies the initiation of type 2 immune responses. Antigen stimulation, leads to thymic stromal lym-

phopoietin (TSLP) or interleukin-25 (IL-25) expression from non-haematopoietic cell sources that subsequently induce type 2 effector cytokine

expression from various cell populations including innate lymphoid cells, basophils or CD4+ T cells. Alternatively, IL-33, which induces many of

the features similar to IL-25 and TSLP, is released as an active form from necrotic cells and acts as an alarmin. In addition, certain antigens such

as Omega-1 from Schistosoma mansoni condition dendritic cells (DCs) so that they guide CD4+ T cells towards a type 2 response. IPSE, inducing

principle of Schistosoma mansoni; Th2, T helper type 2; TLR4, Toll-like receptor 4.
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S. mansoni eggs induced IL-4 expression from basophils

through an IgE-dependent mechanism. Furthermore,

intranasal immunizations with human serum albumin

conjugated to lacto-N-fucopentose III resulted in the ini-

tiation of a type 2 immune responses.29

Overall these studies have increased our understanding

of the antigens and allergens involved in the initiation of

type 2 immune responses. However, they clearly highlight

that initiation of type 2 immune responses is dependent

on a variety of mediators expressed by a wide range of

haematopoietic and non-haematopoietic cell types.

Which cytokines are important for the initiation
of type 2 immune responses?

Many of the antigens and allergens described above do

not act directly on CD4+ T cells and therefore initiate

Th2 differentiation through intermediate mediators. It

has long been known that IL-4 is a characteristic type 2

cytokine, and based on early in vitro studies it was

thought to play an essential role in the differentiation of

Th2 cells.30,31 However, since these studies, in vivo analy-

sis has shown that Th2 cell differentiation can occur in

the absence of IL-4 signalling.32,33 Therefore, suggesting

that IL-4 signalling influences the number of Th2 cells

that develop in vivo but is not essential. It is now widely

accepted that IL-4 signalling leads to GATA3 up-regula-

tion and an indispensable role in the expression of classi-

cal effector cytokines such as IL-5 and IL-13.34,35

Furthering our understanding of this field, a recent study

by Tanaka et al.36 demonstrated that the expression of IL-

4 by Th2 cells required GATA3 binding to a cis-acting

regulatory element, which is known as DNase I-hypersen-

sitive site 2 (HS2), in the second intron of the IL-4 locus.

Interestingly, T cells deficient in HS2 showed impaired

expression of IL-4, whereas other type 2 cytokines includ-

ing IL-13 and IL-5 were unaffected.36 In addition to IL-4/

GATA3-dependent mechanisms, it is now widely accepted

that cytokines, such as TSLP, IL-25 (also known as IL-

17E) and IL-33, from non-lymphoid sources are impor-

tant for Th2 cell differentiation.

Thymic stromal lymphopoietin

Since its discovery, TSLP expression has been observed

from epithelial cells, basophils and mast cells.4,28,37–39 The

importance of TSLP in the initiation of type 2 immune

responses is highlighted by the observation that specific

over-expression of this cytokine in the lung results in air-

way inflammation characterized by increased AHR.40 As

confirmation of these results, TSLPR-deficient mice had

impaired type 2 responses in an ovalbumin-induced

asthma model.40 Similar results have been seen in mice

treated with a soluble TSLPR-immunoglobulin fusion

protein.41 Confirming the importance of TSLP in type 2

immune responses recent in vivo studies have shown that

TSLP signalling is important for the clearance of T. mu-

ris.38,42 However, the role of TSLP in the initiation of

type 2 immune responses during other helminth infec-

tions is not so clear, because TSLPR-deficient mice gener-

ate normal type 2 immune responses and can clear

Nippostrongylus brasiliensis and Heligmosomoides polygyrus

infections similar to wild-type controls.42 It is believed

that TSLP functions by inhibiting the expression of type 1

polarizing cytokines, such as interferon-c and IL-12p70,

because depleting antibodies against these cytokines in

TSLPR-deficient mice rescues their ability to generate type

2 immune responses and clear the parasite.38,42 Therefore,

it is likely that parasites, such as T. muris, that induce a

mixture of type 1 and type 2 cytokines require TSLP to

inhibit the expression of the former.

In addition, TSLP has been shown to condition DCs by

enhancing their expression of chemokines capable of

attracting Th2 cells expressing CCR4,37 up-regulating

OX40 ligand expression, which is important for GATA3

expression in vitro,43 and activating mast cells.44 Although

a large body of evidence suggests that TSLP functions by

conditioning DCs and other innate cells, it has also been

shown that the allergic response to inhaled antigens is

rescued in TSLPR-deficient mice by transferring wild-type

CD4+ T cells.45 There is some suggestion that TSLP acts

directly on CD4+ T cells by inducing signal transducer

and activator of transcription-5 phosphorylation, a pro-

cess that is important for the expression of IL-4.46,47

Interleukin-25

Interleukin-25, also known as IL-17E, was discovered

using cDNA libraries from Th2-polarized cells.48 Other

sources of IL-25 include epithelial cells, basophils, eosin-

ophils and mast cells.49–53 The importance of IL-25 in the

initiation of type 2 immune responses was highlighted in

studies where intraperitoneal injection of recombinant IL-

25 induced features associated with type 2 immune

responses.48 Furthermore, IL-25 is detrimental in allergic

lung diseases, as over-expression of IL-25 in airway epi-

thelial cells results in the initiation of type 2 responses.49

Similarly, intranasal administration of IL-25 leads to

increased AHR, an effect that can be inhibited by anti-

bodies against IL-25 or its receptor.54 Furthermore, two

independent studies showed that airway inflammation

and AHR were reduced in IL-25)/) mice or BALB/c mice

treated with an IL-25 neutralizing antibody during an

ovalbumin-induced asthma model.55,56 In humans, poly-

morphisms in IL-17RB, which pairs with IL-17RA to

form the IL-25 receptor, have been associated with

asthma.57

In contrast, IL-25 has been shown to be beneficial in

various helminth infections. For instance, animals defi-

cient in IL-25 signalling show delayed or absent expulsion
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of the intestinal helminths N. brasiliensis or T. muris,

respectively,58–60 whereas IL-25 administration rapidly

enhances worm expulsion in N. brasiliensis infections.58

Interestingly studies with N. brasiliensis-infected Rag2)/)

mice showed that IL-25-dependent induction of IL-4

required T and B lymphocytes, but IL-5 and IL-13 were

expressed by non-B/non-T (NBNT) cells.48,60,61

Interleukin-33

Interleukin-33 is a member of the IL-1 family11 and sig-

nals through T1/ST2 (encoded by Il1rl1) a receptor

expressed by murine Th2 cells.62,63 The importance of IL-

33 in the initiation of type 2 immune responses is high-

lighted by the observation that administration of this

cytokine resulted in eosinophilia, IgE class switching, pro-

duction of classical type 2 cytokines, and changes in

mucus production in the lung and gastrointestinal tract.11

Further confirming the importance of IL-33 is the obser-

vation that AHR development is impaired in mice defi-

cient in this cytokine compared with wild-type controls64

and blocking T1/ST2 with an antibody or fusion protein

decreased many of the characteristics associated with type

2 responses following the adoptive transfer of Th2 cells.63

Similar to IL-25, IL-33 also plays beneficial roles as

Il1rl1)/) mice are impaired in their ability to express type

2 cytokines following S. mansoni egg administration and

consequently these animals have impaired granuloma for-

mation.65 Furthermore, administration of exogenous IL-33

guides the immune response towards a beneficial type 2

response during T. muris infections.66 Although N. brasili-

ensis expulsion is normal in Il1rl1)/) mice, suggesting that

IL-33 signalling plays a minor role, the expulsion of this

parasite was dramatically impaired in Il17br)/) Il1rl1)/)

mice compared with mice deficient in Il17br alone.60

As mentioned earlier there is an increasing body of evi-

dence suggesting that IL-33 is not secreted but instead

acts as an alarmin. For instance, IL-33 is constitutively

expressed in the nucleus of human epithelial and endo-

thelial cells and released following damage or injury.17

Furthermore, unlike other IL-1 family members, IL-33 is

not activated by caspase-1, in fact there is evidence to

suggest that caspase-1 inactivates IL-33.18–20 This suggests

that apoptotic cells inactivate IL-33 thereby preventing

the development of type 2 immune responses, whereas

necrotic cells, that do not activate caspase-1, release bio-

logically active IL-33 and initiate type 2 immune

responses.

Interleukin-33 appears to regulate the type 2 response

through a number of pathways including the induction of

IL-13 and IL-5 expression from NBNT cell sources.60,61

Furthermore, IL-33 has been associated with increased IL-

4 and IL-13 expression by human basophils and enhanced

histamine release when combined with IgE cross-link-

ing.67,68 Interleukin-33 has also been shown to help initi-

ate type 2 immune responses by activating human mast

cells and inducing the differentiation of alternatively acti-

vated macrophages.69

Innate cell responses associated with type 2

immune responses

During type 2 immune responses, T cells are a major

source of cytokines. However the observation that T-cell-

deficient and B-cell-deficient Rag2)/) mice are still able to

express IL-5 and IL-13 following IL-25 treatment sug-

gested an NBNT cell source of these cytokines.48 A later

study found that IL-25 was important for the expansion

of NBNT cells during N. brasiliensis infection and that

the absence of this population correlated with an inability

to expel the parasite.58 As these original studies several

groups have identified and characterized NBNT cell pop-

ulations that are important for type 2 immune responses.

Innate lymphoid cells

One of the first studies came from Neill et al.,60 who fol-

lowed up on their original identification of an NBNT cell

in N. brasiliensis infection by using an IL-13–enhanced

green fluorescent protein reporter mouse to identify cellu-

lar sources of this cytokine following N. brasiliensis infec-

tion or the administration of exogenous IL-25 or IL-33.

Using this approach, Neill et al.60 identified that a major

source of IL-13 came from a previously undescribed cell

that did not express any known lineage markers. Based

on their expression of IL-13, these cells were termed nuo-

cytes after the 13th letter of the Greek alphabet.60 Dem-

onstrating an important role for nuocytes in helminth

infections, Neill et al.60 showed that the adoptive transfer

of these cells into Il17br)/) Il1rl1)/) mice, which have

impaired type 2 immune responses and are unable to

expel N. brasiliensis, rescued their ability to expel the par-

asite. Furthermore, through elegant transfer experiments

with IL-13-deficient nuocytes this study demonstrated

that IL-13 from nuocytes alone was sufficient to induce

parasite expulsion.60

A separate study by Moro et al.61 identified an innate

lymphoid cell in distinct lymphoid structures, which were

termed fat-associated lymphoid structures, in the adipose

tissues of the peritoneal cavity. This cell was characterized

by its expression of c-kit and the absence of any known

lineage markers, a similar surface phenotype to the NBNT

cells described by Fallon et al. and Moro et al.58,61 termed

them natural helper cells and showed that they expressed

various type 2 cytokines including IL-5 and IL-13. Simi-

larly, a separate study by Price et al.70 identified an IL-13

and IL-5 innate cell population, which were termed innate

helper 2 (IH2) cells, in the spleen, mesenteric lymph

nodes, peritoneum and liver of IL-25-treated hosts. Both

Price et al. and Moro et al.61,70 showed that these innate
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cell populations were absent from cc)/) Rag2)/) mice, and

that this correlated with an inability to expel N. brasilien-

sis. Similar to Neill et al., Moro et al.60,61 demonstrated

that adoptively transferred natural helper cells rescued

goblet cell hyperplasia, which is important for helminth

expulsion, in N. brasiliensis-infected cc)/) Rag2)/) mice,

and were shown to be important for the proliferation of

B1 cells potentially through the expression of IL-5. In con-

trast, Price et al.70 showed that adoptively transferred IH2

cells alone were not sufficient to induce N. brasiliensis

expulsion from cc)/) Rag2)/) mice, instead worm expul-

sion required both IH2 cells and exogenous IL-25 admin-

istration. Similarly, eosinophilia in the lung and spleen

required both adoptively transferred IH2 cells and exoge-

nous IL-25 administration.70 Together these studies clearly

demonstrate an important role for these innate lymphoid

populations in the development of type 2 immune

responses required for parasite expulsion. Further investi-

gation is required to determine how the cells described in

these studies relate to each other.

Multipotent progenitor cells

Around the same time as the studies described above, a

fourth study from Saenz et al.71 used an IL-4–enhanced

green fluorescent protein reporter mouse to show that IL-

25 administration amplified a population of NBNT

c-Kit+ IL-4+ cells and a population of NBNT c-Kit+ IL-4)

cells. This study demonstrated a role for NBNT c-Kit+ IL-

4) cells, which were termed multipotent progenitor

(MPP)type2 cells, in type 2 immunity because adoptive

transfer of these cells rescued the ability to generate type

2 responses in T. muris-infected IL-25)/) mice. Although

MPPtype2 cells are clearly important for type 2 immunity

the study by Saenz et al.71 did not report expression of

IL-13 or IL-5 like the innate lymphoid populations

described previously.60,61,70 Furthermore, based on their

ability to differentiate into various innate cell populations

including basophils, mast cells and macrophages it

appears that MPPtype2 cells are a distinct or mixed cell

population.71

Basophils

The identification of these new innate lymphoid cells has

added to the complexity of the initiation of type 2

immune responses, which had focused on the role of the

basophil. In recent years we have started to understand

the effector functions of basophils. Previously it has been

described that murine and human basophils are an early

source of IL-4,4,28,72–74 which as discussed earlier influ-

ences Th2 differentiation.32,33 The potential role of

basophils as antigen-presenting cells was recently sug-

gested by several studies,4,75,76 however, Ohnmacht et al.77

using Mcpt8Cre mice, which are deficient in basophils,

has recently shown that these cells are not important for

papain-induced Th2 cell differentiation or protection

against primary infections with N. brasiliensis. However,

basophils were found to be important for protection

against secondary N. brasiliensis infections and the onset

of chronic allergic dermatitis.77 A further study by Sulli-

van et al.78 clearly refutes the idea of basophils as anti-

gen-presenting cells because they showed that Th2

cytokine responses were normal in basophil-deficient

Basoph8 · Rosa-DTa mice injected with S. mansoni eggs.

From here it will be important for future studies to use

mice deficient in this cell type such as that described by

Ohnmacht et al. or the Mcpt8-diphtheria toxin receptor

inducible system to elucidate the function of this popula-

tion.77–79 Since the early investigations, a study by Ham-

mad et al.80 identified an inflammatory DC population

recruited to the lung draining lymph node of HDM-trea-

ted hosts. This recruited CD11c+ MHC class II+ popula-

tion was found to express FceR1 and would therefore be

depleted by the MAR1 antibody used previously.4,80,81

Furthermore, in vitro co-cultures with FceR1+ DCs or

basophils showed that the former were important for the

expression of type 2 effector cytokines by CD4+ T cells.80

Conclusion

In recent years our knowledge of the initiating factors of

type 2 immune responses has increased dramatically,

however because of the extensive redundancy within the

system there is still much to learn. The essential roles of

these responses in both helminth infections, which affect

the health of many individuals in developing countries,

and inflammatory conditions such as asthma that affects

over 300 million people worldwide, highlights the need to

understand these complex responses. It is to be hoped

that such elucidation will lead to the identification of new

therapeutic targets in these pathways.
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